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Towards a Bayesian framework for option pricing

Samuel W. Malone∗ Enrique A. ter Horst†
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Abstract

When using a model in continuous time finance for an asset, one can
retrieve directly the likelihood function for the parameters of the asset
process in order to perform statistical Bayesian analysis and estimate the
posterior distributions via Gibbs sampling or other Bayesian methods. If
the joint posterior distribution can be expressed in closed form, then the
pricing formula for the option can be combined with the posterior to inte-
grate out the relevant option parameters and obtain the posterior distri-
bution for the option price. In this paper, we illustrate how to implement
this procedure in a general framework, and further, we show how to in-
troduce prior information about model parameters and use the example
of geometric Brownian motion to derive the interesting result that in our
framework, the martingale condition required for no-arbitrage option price
is only obtained asymptotically as t → ∞. when the drift has a posterior
distribution and the risk-free interest rate is deterministic. We discuss that
in the random case, both the drift and the risk-free interest rate have to
be indistinguishable processes to rule out arbitrage.
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Keywords: Bayesian analysis; Lévy processes; Option pricing; Risk-Neutral
measure; Model selection; Bayesian nonparametrics.

Acknowledgments

The authors would like to thank James O. Berger, Robert L. Wolpert , Goran
Peskir, and German Molina for helpful conversations. All errors are our own.

1 Introduction

Since the seminal paper of Black and Scholes (1973), a large option pricing lit-
erature has developed around the problems implied by relaxing the simplifying
assumptions of the original model, such as constant volatility, zero transactions
costs, and a flat yield curve. This literature has yielded a plethora of alternative
stochastic processes for the underlying, and has derived results showing how to

∗Samuel W. Malone is a Ph.D. candidate at Oxford University, Oxford, United Kingdom.
†Enrique A. ter Horst is an assistant professor at the Instituto de Estudios Superiores de

Administración IESA, in Caracas, DF, Venezuela.
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price options on underlyings that follow such processes. Two popular alterna-
tives to using geometric Brownian motion to model the stochastic process of
the underlying are jump-diffusions and Lévy processes, which exhibit features
such as skewness, kurtosis, and jumps that are also observed in price data in a
wide variety of markets.

Alongside research that has focused on pricing derivatives for such processes,
there has been innovation in the area of Bayesian econometrics on developing
techniques for“integrating out”parameters from the risk-neutral pricing formula
of the option after this formula has been derived in closed form. For an example
of this technique see Eraker et al. (2000). However, no work has been done,
to our knowledge, on integrating out the parameters during the transformation
of the physical measure P to the risk neutral measure Q, except when testing
sequentially a precise hypothesis concerning the drift of a Brownian motion as
in Paulo (2002), or computing Bayes factors between different models as in
Polson and Roberts (1994). Using the Bayesian technique of integrating out
parameters, Darsinos and Satchell (2001) derive the posterior distribution in
closed-form for a European call option when the underlying follows a geometric
Brownian motion, but they impose another likelihood in the computation of
the price than that which is inherent in the stochastic process itself.

Thus the task of the present paper is to develop a methodology that is able
to yield theoretically the posterior distribution (in closed-form as Darsinos and
Satchell (2001) or numerically when that is not possible) of a call option price
by integrating out the relevant parameters given their posterior distributions.
These posterior distributions are constructed using the likelihood function that
is implied by the underlying stochastic process used, and the prior distributions
that are specified as the views of the market participant.

Although in practice, it is axiomatic that agents use their subjective beliefs
as inputs into their valuation of assets, this runs counter to the famous and
counterintuitive result of Black and Scholes (1973) that “risk aversion does not
matter” in the determination of the fair price of a call option. This result, of
course, is predicated on the crucial assumptions of continuous, zero-cost trading
and an asset process (geometric Brownian motion) without jumps or other
forms of market incompleteness. In contrast, when markets are incomplete,
risk-aversion, and subjective beliefs, do matter.

When the underlying is modeled as a geometric Brownian motion, the equiv-
alent 1 risk-neutral measure Q is unique, and the option has a unique price.
When there are jumps, on the other hand, the risk-neutral measure Q is not
unique, and thus a unique price for the option usually does not exist. Often,
in the latter case, what we obtain is a range of admissible prices that still rule
out arbitrage. There are ways of narrowing this range of prices; Cont and
Tankov (2003) discuss how to circumvent the non-uniqueness of Q, but their
use of relative entropy methods also involves the problem we are trying to avoid,
namely, the introduction of new information beyond that which is contained in
the likelihood implied by the underlying stochastic process (and of course the

1A probability measure P is equivalent to another probability measure Q (or more com-
pactly P ∼ Q), if P and Q are mutually absolutely continuous.
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prior beliefs of agents). The contribution of this paper is to show how one can
link naturally Mathematical Finance with Bayesian statistics from a continuous
time point of view. We show as well interesting problems concerning informa-
tion asymmetry amongst agents through the use of prior distributions on the
model parameters.

The outline of this paper is as follows. In section 2 we introduce Lévy
processes and explain how they are used to model financial processes and price
options by using the Esscher transform. The latter is but the Radon-Nikodym
derivative of the risk-neutral measure Q with respect to the physical measure
P, which combined with a prior distribution yields a posterior. We show that
integrating these parameters from the model preserves the martingale property
of the Esscher transform. In section 3, we develop a Bayesian framework for
option pricing together with examples from the Black & Scholes model, as well
as in a diffusion case. Section 4 concludes.

2 Bayesian option pricing

The mainstream Bayesian literature has concerned itself with using state-space
models as a way to get posterior distributions for derivatives perturbated around
a Black & Scholes price of the following sort:

log
(

St

St−1

)
= µ + σ(Wt −Wt−1) (1)

Ct = BS(σ, St) + εt (2)

where Wt is a Brownian motion, εt ∼ N(0, σ2), and BS(σ, St) is the option price
from the classical Black & Scholes model (see Johannes and Polson, 2002, p. 35-
36 regarding this last result). Both Johannes and Polson (2002) and Darsinos
and Satchell (2001) get the posterior distribution of the volatility σ from the
discrete version of the continuous time process, which exists in discrete time,
although is a degenerate point mass in continuous time as Polson and Roberts
(1994) explain. As we saw, in the previous sections, we derived the likelihood for
the Black & Scholes model that is already implied by a Geometric Brownian
motion, which is a different road to that of. In order to get the posterior
distribution of the theoretical Black & Scholes price, Polson and Roberts (1994)
use a perturbation εt around the theoretical Black & Scholes price to construct
a likelihood and proceed with a Bayesian analysis. Our framework consists
of retrieving the likelihood function directly from the Radon-Nikodym process
(Zθ

t ) used when performing a change of measure from the physical P to the
risk-neutral Q. Combining our likelihood Zθ

t with a prior π(θ) enables us to
derive a posterior distribution for π(θ|{Ss : 0 ≤ s ≤ t}) given an observed price
history {Ss : 0 ≤ s ≤ t}. Darsinos and Satchell (2001) are able to find a closed-
form solution for the posterior of the call option, since their likelihood and
priors exist with reference to Lebesgue measure. In general such densities do
not always exist with respect to Lebesgue measure but (Zθ

t ) does. Our method
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can be carried out with the use of numerical simulations from the parameter’s
posterior distribution by standard Bayesian numerical methods.

The classsical framework of option pricing supposes a call option C(t, St, θ)
whose payoff h(St) depends2 on our underlying St, and can be computed via
the following integration:

C(t, St, θ) =
∫

S
h(x)dQ(x)

where integration is performed under the risk-neutral measure Q, such that
the discounted stock price exp (−rt) St is a Q-martingale. General integration
theory states that the following change of measure is also possible by invoking
the Radon-Nikodym theorem:

C(t, St, θ) =
∫

S
h(x)

dQ(x)
dP(x)

dP(x)

and if considering a prior π(dθ) that verifies some admissibility and integrability
condition (see section 3.2), we can perform the following integration with respect
to the prior π(dθ):

C(t, St) =
∫

Θ
C(t, St, θ)π(dθ)

C(t, St) =
∫

Θ
π(dθ)

∫
S

h(x)
dQ(x)
dP(x)

dP(x)

=
∫

Θ

∫
S

h(x)
dQ(x)
dP(x)

dP(x)π(dθ)

Although we do not always have a closed-form solution for this integral, we can
compute them through classical Markov Chain Monte Carlo methods to get
the marginal option price. In order to do this, we need a likelihood and a prior
distribution on the model parameters in order to perform a Bayesian analysis.
In the next section we show how to find this likelihood and what integrability
conditions a prior must possess, as well as whether the martingale property of
the Radon-Nikodym dQ(x)

dP(x) is preserved after integrating out the vector θ. The

martingale property of dQ(x)
dP(x) is a crucial condition when performing a change

of measure in stochastic analysis, and for option pricing as well. This is why in
the next section we show that even after integrating out the parameter θ from
Zθ ≡ dQ(x)

dP(x) , the result is still a P-martingale.

2For a European call option, the payoff function is equal to max(ST −K, 0) where K is the
strike price at termination date T .
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3 Methodology

3.1 Change of measures and the likelihood function in option
pricing

When modelling any underlying St of a derivative, it is common to use the
following form:

St = exp (−rt + Xt)

where Xt can either be a Lévy process or a diffusion, and thus St is the expo-
nential3 of either processes discounted by −rt . In order to price options on
an underlying St, one needs to find an equivalent probability measure Q ∼ P
such that St ≡ exp (−rt + Xt) is a martingale under Q, i.e. the discounted
stock price has to be a martingale under Q. When performing a change of
measure for a given stochastic process St under P to Q, one can regard S as a
random variable on the space Ω = D[0,+∞) of cádlág (Continue à droite lim-
ites à gauche) paths together with its associated filtration of measurable sets
indexed by time (Ft)t≥0. This measure P is therefore defined on the space of
sample paths of X, and so the Radon-Nikodym derivative dQ(x)

dP(x) with respect
to the reference measure P is the likelihood function after the process has been
observed up to time t (see chapter X, section 2 Jacod and Shiryaev, 1987, on
the equivalence between Radon-Nikodym derivatives and likelihood function).
Several popular methods are used to perform changes of measure, yielding like-
lihood functions in order to perform a Bayesian analysis. Among these methods
we can cite the mininal entropy and the Esscher transform (see Cont and Tankov
(2003)). The latter is named in honor of the Swedish actuary Frederik Esscher
Bohman and Esscher (1963), and helps perform transformation of distribution
functions, and thus of probability measures as well. This method is also known
in the statistical literature as exponential tilting. For more information on the
Esscher transform, see Cont and Tankov (2003).

The Esscher transform is just the Radon-Nikodym derivative of a measure
with respect to another measure. In our framework, the dominating measure
can either be Q or P. This in turn allows us to work with the likelihood dQ

dP in
order to perform a Bayesian analysis, where P is the reference measure. (see
Cont and Tankov, 2003, chapter 9, regarding the change of measure and the
Esscher Transform).
The following theorem, due to Kallsen and Shiryaev (2002), provides an explicit
method for computing the Esscher transform for exponential Levy processes
such that the discounted stock price process St is a Q-martingale.

Theorem 1 Suppose T>0 and there exists θ? ∈ R such that

EP{exp (θ?Xt)} < +∞ and EP{exp ((θ? + 1)Xt)} < +∞ (3)

and the equation
3See Applebaum (2004) and Oksendal (2003) for the case when Xt is a Lévy process and

a diffusion respectively.
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k(θ? + 1)− k(θ?) = 0 (4)

holds. Then

dQ
dP

= exp (θ?XT − k(θ?)) (5)

defines an equivalent martingale measure for {St}0≤t≤T under which it is a mar-
tingale. The process {Xt}0≤t≤T is a Lévy process under Q with characteristic
triplet (µ?, σ?, ν?), where

µ? = µ + σθ? +
∫

R
(exp θ?x− 1)h(x)ν(dx) (6)

σ? = σ (7)
ν? = exp (θ?x) ν(dx) (8)

The Radon-Nikodym derivative dQ
dP is referred in the litterature as either the

Esscher transform (see Gerber and Shiu (1994); Hubalek and Sgarra (2005)),
exponential family in sequential analysis (see Jacod and Shiryaev (1987)), den-
sity process in probability, or likelihood function in statistics (once the process
has been observed from time 0 to time t).

As we just explained, the Esscher transform is the initial building block to
yield a likelihood with respect to P which combined with prior views through a
prior distribution on θ, results in a posterior distribution for θ that can be used
to incorporate the uncertainty of the model parameters in the option price, and
to integrate it out.
It is important to point out that even when two market agents choose two
different priors π(θ)1 and π(θ)2 on θ, their posteriors yield asymptotically the
same results if both are consistent. The following two theorems are from Ghosh
and Ramamoorthi (2003):

Theorem 2 For each n, let π(θ|S1, . . . , Sn) be a posterior given S1, . . . , Sn.
The sequence {π(θ|S1, . . . , Sn)} is said to be consistent at θ0 if there is a Ω0 ⊂ Ω
with P∞θ0

(Ω0) = 1 such that if ω is in Ω0 , then for every neighborhood U of θ0,

π(U |S1, . . . , Sn) → 1 (9)

Theorem 3 Assume that the family {Pθ : θ ∈ A} is dominated by a σ-finite
measure µ and let pθ denote the density of Pθ. Let θ0 be an interior point of
Ω0, and π1, π2 be two priors densities with respect o a measure ν, which are
positive and continuous at θ0. Let π(θ|S1, . . . , Sn)i, i = 1, 2 denote the posterior
densities of θ given {S1, . . . , Sn}. If π(θ|S1, . . . , Sn)i, i = 1, 2 are both consistent
at θ0 then:

limn

∫
|π1(θ|S1, . . . , Sn)− π2(θ|S1, . . . , Sn)|dν(θ) = 0 a.s. Pθ0 (10)
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Here P∞θ0
is the product probability measure defined on the space of infinite se-

quences Ω = (X∞, A∞). These last two theorems show that as time progresses,
the importance of the prior distribution fades away (and thus the importance
of the prior’s hyperparameters as well), since we get to observe more and more
data. In our framework, the dominating measure µ of Ghosh and Ramamoorthi
(2003) is our P and their family Pθ corresponds to our risk-neutral measure Q.

3.2 The predictive risk-neutral measure

This section illustrates the use of the theorem by Kallsen and Shiryaev (2002)
applied in a Bayesian framework. Our idea builds on the work of Paulo (2002)
concerning the Bayesian treatment of integrating out all the parameters of St

under P by introducing prior distributions for the drift µ. As Polson and Roberts
(1994) point out, the posterior distribution for σ2 converges to a point mass at
the quadratic variation estimate as 4t → 0. We shall thus only consider µ as
our parameter and let θ = [µ] the vector containing our parameter µ. We let
Xt ≡ (µ− r − σ2

2 )t + σWt and apply theorem (1).

EP{exp (θXt)} = exp
(

θ(µ− r)t +
σ2θ2t

2

)
EP{exp ((θ + 1)Xt)} = exp

(
(θ + 1)(µ− r)t +

σ2(θ + 1)2t
2

)
where all the assumptions of theorem (1) are met for we are dealing with Brow-
nian motion. Solving for θ in k(θ? + 1)− k(θ?) = 0 we get:

θ? =
(r + σ2

2 − µ)
σ2

− 1
2

θ? =
(r − µ)

σ2

we thus see how θ? is a function of θ ≡ [µ,σ].
dQ|Ft

dP|Ft
is the restriction of dQ

dP to Ft, and in order to simplify notation, we shall

write Zθ
t for dQ|Ft

dP|Ft
interchangeably. It is worth noting that since Zθ

t is a version

of dQ|Ft

dP|Ft
and is a P-martingale, we have that 1

Zθ
t

is a version of dP|Ft

dQ|Ft
and is a

Q-martingale (see Protter, 1990, p. 101-102, for a proof and explanation).
Perform the following change of measure (via the Esscher transform) for a given
θ? according to theorem 1:

Zθ?
t = exp (θ?Xt − k(θ?)) (11)

We can show that Zθ?
t is a Ft-martingale by Itô’s lemma under Q and also that

E(Zθ?
t ) = 1. These last properties enable us to define ∀t Zt as:

7



Zt =
∫

A
Zθ?

t π(θ?)dθ? (12)

where A ⊂ Ω = D[0,+∞) is a measurable set. We define Zt as the marginal risk
neutral density process. We choose π(θ) such that EP{Zt} < +∞ as in Paulo
(2002) and show that:

EP[Zt|Fs] = EP[
∫

A
Zθ

t π(θ)dθ|Fs] (13)

=
∫

A
EP[Zθ

t |Fs]π(θ)dθ (by Fubini’s) (14)

=
∫

A
Zθ

sπ(θ)dθ (because Zθ
s is a P-martingale) (15)

≡ Zs (thus Zt is an Ft-martingale) (16)

Since Zt is a P-martingale and EPZt = 1∀t, we can then perform the following
change of measure: dQ = ZtdP.

4 Some illustrations

4.1 Posterior example under the Black & Scholes model

In the classic paper by Black and Scholes (1973), the stock price St is solution
to the following SDE:

dSt

St
= µdt + σdWt (17)

and the solution St is equal to:

St = S0 exp
[
(µ− σ2

2
)t + σWt

]
(18)

Working with the discounted stock price St ≡ exp (−rt) St:

St = S0 exp
[
(µ− r − σ2

2
)t + σWt

]
(19)

enables us to determine the deterministic risk-neutral condition µ = r which is
the one that determines the unique martingale measure. We then get that St

is a martingale under Q4 and is equal to:

St = S0 exp
[
(r − σ2

2
)t + σWt

]
(20)

4St is a Q-martingale, which is equivalent to showing that Zθ
t St is a P-martingale. See

appendix for a proof.
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As we shall see, this martingale condition holds asymptotically in our Bayesian
framework as t tends to infinity. Doing the same algebra as the example from
section 3.2, we find that the θ that solves the following equation:

k(θ + 1)− k(θ) = 0 (21)

yields θ = (r+σ2

2
−µ)

σ2 − 1
2 , where:

k(θ + 1) = (θ + 1)[µ− r − σ2

2
]t +

σ2(θ + 1)2t
2

k(θ) = θ[µ− r − σ2

2
]t +

σ2θ2t

2

we get the following posterior for µ

[µ|{Ss : 0 ≤ s ≤ t}] ∼ N

[
r − σWt

t
,
σ2

t

]
(22)

(please see the appendix for a derivation of the posterior). One important
observation is that as t → +∞ we get σ2

t → 0 and thus µ → θ0 = r since
σWt

t → 0 as t → +∞. By theorem 2, we confirm that the derived posterior for
µ is consistent. We get the martingale condition µ = r asymptotically as Black
and Scholes (1973). For a given t, µ is a normally distributed random variable
and the probability that µ = r is zero. In the case where both µ and r can
be stochastic, then the above equality has to be understood in an almost sure
for every t, thus making both processes indistinguishable (see Protter, 1990, p.
4, for for a definition). The elicitation of a prior on µ imposes a probability
distribution on r as well as the other way around. Defining a stochastic process
for r imposes an objective prior on µ . Additionally, the risk neutral measure
Q can be retrieved by using the following Esscher transform:

Zθ
t = exp

[
Xt

(
r − µ

σ

)
− (r2 − µ2)t

2σ2
+

(r − µ)t
2

]
(23)

and

Xt = (µ− σ2

2
)t + σWt under P (24)

thus

Zθ
t = exp

[
Wt

(
r − µ

σ

)
− t

2

(
r − µ

σ

)2
]

(25)

(see Cont and Tankov, 2003, chapter 9, regarding this last result). The use of
a Bayesian framework for σ2 is dealt by Polson and Roberts (1994) where it is
shown that its posterior converges to a point mass at the quadratic variation
estimate. This last result for σ2 is not true when dealing with a jump-diffusion.
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4.2 Posterior example under the diffusion case

When considering processes with time dependent drifts and volatilities (µ(t, Xt)
and σ(t, Xt)), we are not considering anymore necessarily solutions of SDE’s
that are Lévy processes anymore. This is why, in order to derive the likelihood
of such processes, we need to invoke Girsanov’s theorem which gives us an
extended Esscher transform which can incorporate time dependent drifts and
volatilities. We shall consider a market that has two securities:

dXt = r(t, w)Xtdt (26)
dSt = µ(t, w)Stdt + σ(t, w)StdWt (27)

(28)

where r(t, w), µ(t, w), and σ(t, w) are stochastic processes that have to verify
some conditions (see Oksendal (2003)). We construct the likelihood of the
stochastic process St with respect to the dominating measure Q induced by:

dSt = r(t, w)Stdt + σ(t, w)StdWt. (29)

After observing the process from time 0 to t, the likelihood is then given by
(Zθ

t = dQ
dP ):

Zθ
t = exp

[∫ t

0

(
r(s, w)− µ(s, w)

σ(s, w)

)
dSs

Ss
− 1

2

∫ t

0

(
r(s, w)2 − µ(s, w)2

σ(s, w)2

)
ds

]
and if µ(t, w) = µ, r(s, w) = r and σ(s, w) = σ we get:

Zθ
t = exp

[(
r − µ

σ

)∫ t

0

dSs

Ss
− 1

2

(
r2 − µ2

σ2

)∫ t

0
ds

]
∫ t

0

dSs

Ss
= log

St

S0
+

σ2t

2

since we are looking for ( 1
Zθ

t
= dP

dQ), we get after some simplifications:

dP
dQ

= exp

[
−

log St
S0

(r − µ)
σ2

− (r − µ)t
2

− (µ2 − r2)t
2σ2

]
and after combining squares we get the following posterior for µ:

[µ | {Ss : 0 ≤ s ≤ t}] ∼ N

(
log

St
S0

t + σ2

2 , σ2

t

)
. In a same fashion as Polson and

Roberts (1994), we can perform a Bayes factor analysis to perform model selec-
tion among competing models for the underlying using their methodology but
with a different reference measure than theirs.
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5 Discussion and Conclusions

When traders and market participants use pricing formulas for derivatives, the
price is a function of some kind of parameter in some way. Ad-hoc methods are
used such as historical estimates, or plain averages in order to plug those val-
ues back into the formula. By deriving the likelihood through various methods
using the Esscher transform or Girsanov’s theorem for diffusions, one is able to
make inference on the drift of the underlying and other parameters depending
on the mathematical nature of the latter.
When introducing a prior for the drift of a Geometric Brownian motion, re-
flecting the agent’s beliefs/predictions, one gets that all agents have the same
information about the drift since µ = r asymptotically as t → +∞. We have
shown that this results holds only when µ is not random. Once we introduce
a prior distribution on µ, we need to use the notion of indistinguishability be-
tween µ and r. The prior distribution for µ induces a probabilistical model
for r, in the same way that a model for r induces a prior for µ through the
martingale condition µ = r.
An interesting point to consider would be to extend the the work of Polson
and Roberts (1994) for computing Bayes factors for general Lévy processes in
order to choose the best risk-neutral model that fits the data under the physical
measure, as well as performing the same analysis but for Lévy processes with
discontinuous sample paths. Also, as a final note, it is noteworthy to notice
that when market participants introduce prior information concerning model
parameters, the risk neutrality can only be achieved asymptotically, since µ
becomes uncertain, while r is fixed in the BS model. An interesting feature
is that in the case of jump-diffusion models, the posterior of the volatility is
not degenerate at the quadratic variation of the process for it is equal to the
diffusion component and the sum of its jumps (Protter (1990)). Future re-
search concerning the posterior of the jump intensity measure (Lévy measure)
for jump-diffusion models should be considered, but is still an ongoing research
topic in the statistical literature (see Lancelot (2005)).
The framework developed in this paper shows how to get the marginal option
price by finding the likelihood and using appropriate prior distributions on the
model parameters. Promising results of implied volatility forecasts by Darsi-
nos and Satchell (2001) might pave the way for exploring further the topic of
applied Bayesian option pricing methods.
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Appendix

Proof that St is a Q-martingale when St is a Geometric Brownian
motion

To show that St is an Q-martingale is equivalent to show that Zθ
t St is a P-

martingale and θ ≡ r−µ
σ2 − 1

2 . Recalling that:

Zθ
t St = exp(Yt)

where Yt ≡ (θ + 1)Xt − θ(r − µ)t− θ2σ2t
2 and Xt ≡ (µ− r)t + σWt and Wt is a

standard Brownian motion. By Itô’s lemma we get:

exp(Yt)− 1 =
∫ t

0
exp(Ys)dYs +

1
2

∫ t

0
exp(Ys)d[Ys, Ys]

=
∫ t

0
exp(Ys)dYs +

1
2

∫ t

0
exp(Ys)(θ + 1)2σ2ds

and

dYs = (θ + 1)(µ− r)dt + (θ + 1)σdWt − θ(µ− r)ds− θ2σ2dt

2

and we get:

exp(Yt)− 1 =
∫ t

0
exp(Ys)(θ + 1)σdWs

which is a P-martingale.

Posterior for µ using the Esscher transform

We found that the optimal θ making St = exp(Xt) into a Q-martingale is equal

to θ = (r+σ2

2
−µ)

σ2 − 1
2 where:

Xt ≡ (µ− r − σ2

2
)t + σWt

and

12



θXt = −
(µ− r − σ2

2 )2t
σ2

−
(µ− r − σ2

2 )t
2

+ σWt
(r − µ + σ2

2 )
σ2

− σWt

2

−θ(µ− r − σ2

2
)t =

(µ− r − σ2

2 )2t
σ2

+
(µ− r − σ2

2 )t
2

−σ2θ2t

2
= −

(µ− r − σ2

2 )2t
2σ2

+
(r + σ2

2 − µ)t
2

− σ2t

8

θ2 = [
(r + σ2

2 − µ)
σ2

− 1
2
]2

=
(r + σ2

2 − µ)2

σ4
−

(r + σ2

2 − µ)
σ2

+
1
4

and the Radon-Nikodym derivative dQ
dP being equal to:

dQ
dP

= exp (θXT − k(θ)T )

is thus proportional to (after subsitutions from above):

dQ
dP

∝ exp

(
−

(µ− r − σ2

2 )2t
2σ2

+
(r + σ2

2 − µ)t
2

− σ2t

8
+ σWt

(r − µ + σ2

2 )
σ2

− σWt

2

)
where we have:

exp

(
−

(µ− r − σ2

2 )2t
2σ2

+
(r + σ2

2 − µ)t
2

− σ2t

8
+ σWt

(r − µ + σ2

2 )
σ2

− σWt

2

)
= exp

(
Wtθ −

σ2θ2t

2

)

where θ =
[

(r−µ+σ2

2
)

σ − σ
2

]
Keeping only expressions depending on µ:

dQ
dP

∝ exp

(
−

(µ− r − σ2

2 )2t
2σ2

+
(r + σ2

2 − µ)t
2

+ σWt
(r − µ + σ2

2 )
σ2

)

∝ exp
(
− t

2σ2
[(r +

σ2

2
− µ)2 − 2(r +

σ2

2
− µ)

1
2
(σ2 +

2σWt

t
)]
)

∝ exp
(
− t

2σ2
[r +

σ2

2
− µ− σ2

2
− σWt

t
]2
)

∝ exp
(
− t

2σ2
[µ− r +

σWt

t
]2
)

∝ exp
(
− t

2σ2
[µ− (r − σWt

t
)]2
)

and we conclude that the posterior for µ is:
N
[
r − σWt

t , σ2

t

]
13
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